








Figure 2. ‘Group View’ of the results produced by O-miner for the GIST data (GSE20709). (A) Users can compare frequency plots between the
different biological groups with or without filtering, for the whole genome or a specific chromosome and obtain a list of the significant genes within
the frequently altered copy number regions. (B) Another tabbed view enables users to browse between the defined biological groups and view
frequency plots for each biological group with or without filtering, at the genome or chromosome level in HTML or pdf formats. For example,
clicking on Filtered for KIT subgroup will produce the log2ratio plot of filtered data for the 14 KIT mutated samples in the same page (C).

Figure 3. ‘Group View’, Compare Frequency Plots option, for the biological groups within the GIST data (GSE20709). O-miner provides a useful
summary of putative regions of copy number gains and losses by providing frequency plots for each defined biological group. The user can easily
compare and contrast results from the two biological groups in this study [14 samples with KIT mutation (A) and 7 samples with PDGFRA
mutation (B)].
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(if selected) and expression plots. As an example, we
analysed six drug-resistant/parental MIA-PaCa-2 pancre-
atic cell lines profiled using Affymetrix GeneChip�

Human Genome Arrays U133 Plus 2.0 (GSE16648) (39).
After applying QC, normalization using GCRMA and
filtering by standard deviation to select the top 5% of
most variable probes, we performed a differential expres-
sion analysis using LIMMA to compare resistant to
parental cell lines. A typical O-miner tabbed output
includes QC information, differentially expressed genes,
a cluster dendrogram, overrepresented gene ontology
terms and an expression plot generator that could be
used to produce expression plots on the fly to compare
the expression level of a gene(s)/probe(s) of interest
across the array data within the defined biological
groups (Figure 5).
O-miner can also be used to run a rapid global analysis

on transcriptomics data. For example, we analysed .CEL
files from three prostate cell lines (LNCaP, DU145 and

PC3) from three different studies in ArrayExpress/GEO
(E-TABM-948, GSE32474 and E-GEOD-28846). Figure 6
demonstrates additional O-miner output capabilities and
shows a Venn diagram indicating the overlap of differen-
tially expressed probes between the different cell lines and
clustering of expression data across the experimental
groups.

CONCLUSIONS AND FUTURE WORK

O-miner is a useful and flexible tool, particularly for biolo-
gists to carry out routine data analysis without the need
for a complex IT infrastructure or in-depth bioinformatics
support. Future plans include the addition of further
analysis pipelines, in particular for methylation, miRNA
and downstream mining of next-generation sequencing
data. In its current version, O-miner allows users to
submit data by giving the GEO series number. For the
moment this is limited to series with samples profiled on
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Figure 4. ‘MCR View’ of PEL (EBV-negative and EBV-positive) and non-PEL cell lines (GSE28684). (A) It is possible to identify recurrent regions
of copy number alterations within the biological groups being investigated, compare chromosome plots and explore MCR regions for each biological
group in more detail for the whole genome or a specific chromosome. Results could be exported as Excel or BED files. Results could also be viewed
in the UCSC Genome Browser (B), where one could overlay and compare the detected MCR regions in each biological group, zoom in a specific
MCR region on chromosome 19p13.3 and investigate its gene content using the RefSeq genes track. In a few seconds, a quick visual inspection
narrowed down a smaller region on 19p13.3 where there is an MCR of genetic gain specific to the EBV-negative PEL subgroup. This directly points
to some of the genes reported in the original paper (RFX2, ACSBG2 and FUT3) as well as others important ones mapping to this MCR.
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Figure 5. Expression analysis of MIA-PaCa-2 resistant/parental samples (GSE16648). O-miner produces a tabbed view of results with quality control
(A), clustering, differential expression, gene ontology and expression plot generator for a particular gene(s)/probe(s) of interest (B).
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Figure 6. Global-analysis of prostate cell lines from three studies (E-TABM-948, GSE32474 and E-GEOD-28846). (A) Venn diagram showing
overlaps between differentially expressed probes in each comparison. (B) Coloured cluster dendrogram. Each cluster has its colour. The plot
displays the biological groups below in order to quickly compare it with the observed clusters.
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the same platform. We plan to develop this further in
future releases. We are also planning to cover additional
platforms/species such as Illumina and Affymetrix
Whole-Transcript arrays and to make O-miner available
as an R package.
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